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Random neighbor theory of the Olami-Feder-Christensen earthquake model
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2HLRZ c/o Forschungszentrum Ju¨lich, D-52425 Ju¨lich, Germany

~Received 27 May 1997!

We derive the exact equations of motion for the random neighbor version of the Olami-Feder-Christensen
earthquake model in the infinite-size limit. We solve them numerically and compare them with simulations of
the model for large numbers of sites. We find perfect agreement. But we do not find any scaling or phase
transitions, except in the conservative limit. This is in contradiction to claims by Lise and Jensen@Phys. Rev.
Lett. 76, 2326~1996!# based on approximate solutions of the same model. It indicates again that scaling in the
Olami-Feder-Christensen model is only due to partial synchronization driven by spatial inhomogeneities.
Finally, we point out that our method can be used also for other self-organized criticality models and treat in
detail the random neighbor version of the Feder-Feder model.@S1063-651X~97!04210-4#

PACS number~s!: 05.40.1j, 05.70.Ln, 91.30.Bi
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I. INTRODUCTION

During the past ten years more than 2000 publicati
were concerned with the idea of self-organized critica
~SOC! proposed by Bak, Tang, and Wiesenfeld@1#. They
introduced a nonequilibrium system, the so-called sand
model, which is driven slowly by adding single sand gra
at random positions. Without any control parameter to fi
tune, it evolves into a critical state. In this state the syst
reacts to the external drive with a series of relaxation eve
~avalanches!. It becomes critical in the sense that the spa
and temporal distributions of these avalanches obey po
laws, indicating that any characteristic scales in space
time are lost. The attribute ‘‘self-organized’’ is to stress t
absence of a fine-tuned control parameter.

A crucial point in understanding the robust scaling of t
Bak-Tang-Wiesenfeld~BTW! model is the existence of
conservation law@2#: The total amount of sand in the syste
is conserved if boundary effects and external perturbati
are neglected.

In the frame of this concept, Olami, Feder, and Chr
tensen introduced a nonconservative ‘‘continuous cellu
automaton’’ @3# as a specific realization of the two
dimensional Burridge-Knopoff earthquake model@4#. Details
of this model will be described below. In contrast to t
BTW model, it is not conservative in general. It involves
parametera and a conservation law holds only for a speci
valuea5ac . It was found in@3,5# and subsequent simula
tions @6# that the system displays power-law behavior in
wide range of the control parametera ~not only nearac! and
the critical exponents depend ona. Thus the model seems t
show SOC and conservation seems not to be a neces
condition.

But, on the other hand, it seems that spatial inhomoge
ities are crucial for the observation of scaling in the Olam
Feder-Christensen~OFC! model@6–8#. In the original paper
by Olami, Feder, and Christensen the boundary conditi
~BCs! were not periodic, which induced an inhomogene
with a diverging length scale in the thermodynamic lim
This inhomogeneity of the BCs leads to partial synchroni
tion in the bulk that is both driven and destroyed by t
561063-651X/97/56~4!/3944~9!/$10.00
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boundary @6#. Subsequent simulations with periodic BC
showed no scaling@9,6#, as did simulations with frozen ran
domness but without diverging length scales@10,11#. The
basic source of scaling in the OFC model is the slow build
of large coherent domains in which the system itself is h
mogeneous, but which are driven by regions where the s
tem is not homogeneous.

Although the definitions of these SOC models are sim
and they are easily simulated on a computer, only few ex
results are known. Most of the difficulties in the analytic
treatment arise from the spatial correlations due to the in
actions of the particles. In a mean-field theory, which is
first step towards a detailed understanding, these correlat
are simply neglected. A more refined strategy to avoid s
tial correlations is to replace the nearest-neighbor inter
tions by interactions between random sites. For the O
model this was already attempted by Lise and Jensen@12#.
But in that paper additional assumptions and approximati
were made that are hard to justify. With these assumption
transition was found from non-SOC to SOC ata signifi-
cantly less thanac . This is very surprising, as we argue
above that spatial structures are crucial for the emergenc
scaling and any such structures are of course eliminate
the random neighbor version.

In the following we study the random neighbor model
detail without any further approximations. We will be led
a complete set of equations that allow us to calculate num
cally all the relevant quantities. We will see that there is
SOC in the dissipative regime of the control parameter.
the case of conservation the exact solution shows that
system becomes a critical branching process equivalen
critical percolation on a Bethe tree and the critical expone
take their mean field values.

II. MODEL

The model involves on a set ofN sites, each of them
equipped with a continuous stress~or ‘‘force’’ ! variablezi .
Eachzi can take any value greater than or equal to 0,
only values less than 1 are stable. After having initializ
each site with a randomly chosen valueziP@0,1@ , the system
3944 © 1997 The American Physical Society
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56 3945RANDOM NEIGHBOR THEORY OF THE OLAMI-FEDER- . . .
evolves according to the following rules.
~i! All zi are simultaneously and continuously increas

with the same speedv51.
~ii ! If any zi exceeds the threshold value 1 the abo

driving stops and the forces are redistributed in the follow
way: All unstable sites discharge simultaneously,

zi→0 ;zi>1. ~1!

For each of these discharging sitesn random ‘‘neighbors’’
j 1 ,...,j n are chosen and their stress variables are increa
by a fixed fraction ofzi ,

zj k
→zj k

1azi , k51,...,n. ~2!

The integern is constant, but otherwise arbitrary. If the a
plication of Eq. ~2! creates new unstable sites, rule~ii ! is
again applied in the next time step, again simultaneously
all unstable sites. This procedure is repeated until all sites
stable. After that, the system is again driven according
rule ~i!, until at least one site withzi51 appears. A series o
causally connected discharging events is called an ea
quake or an avalanche. Its sizes is measured by the tota
number of discharges. If a site dischargesm times during an
avalanche, it is countedm-fold in the calculation ofs. The
duration t of an earthquake is defined as the number
sweeps through the lattice necessary to get a stable con
ration. Obviouslys, as well ast, is always greater than o
equal to 1.

The parametera that controls the dissipation can take a
value between 0 and 1/n ~a.1/n is unphysical since soone
or later an infinite and ever-growing avalanche would occu!.
Only for a51/n is the system conservative. Note that t
randomness of the neighbors appearing in Eq.~2! is an-
nealed: For each discharging event, then random neighbors
are chosen anew. Obviously, this prevents any buildup
spatial correlations in the values ofz.

The numerical calculations as well as the simulations
restricted to the casen54. Obviously this is most appropri
ate for a mean-field theory of the two-dimensional OF
model. But our analytic results are more general and hold
any n>2.

As well known, the original~nearest-neighbor! version of
the model is very sensitive to the choice of BCs@9,6#. Any
BCs other than periodic introduce inhomogeneities that
crucial in building up the spatial structures that manif
themselves in nontrivial avalanches@6–8#. For the random
neighbor version, nonperiodic BCs were used in@12#. This
also introduces spatial inhomogeneity, which is, howev
completely irrelevant for the dynamics, ‘‘space’’ being
dummy concept in a random neighbor model. In addition,
BCs used in@12# lead to specific finite-size corrections th
might be not easy to disentangle from the true asympt
behavior. In contrast, we treat all sites equally in the pres
paper, mimicking thereby periodic BCs. In addition, we sh
study only the infinite-size limit. More precisely, we sha
formally work with a finite numberN of sites, but will un-
derstand that we are only interested in the limitN→`. For
finite sizes there are correlations that make the study of
model rather awkward.
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III. RANDOM NEIGHBOR THEORY

In the OFC model, there is a finite chance that two si
become unstable simultaneously during the continuous
crease~i!. It arises from the nonzero probability that tw
sites that had discharged in the same previous earthq
have not been hit by a discharging neighbor~or have been hit
by the same neighbors! until they reachz51. In the lattice
version this implies that the notion of an earthquake its
becomes a bit delicate: Should we consider an event that
triggered simultaneously by two sites as one earthquak
two? In the off-lattice version we still have a nonzero chan
for such events. But on an infinite lattice the subquakes
lowing each unstable site will not overlap. Thus they w
evolve completely independently. This means that the mo
becomes effectively Abelian@13# in the sense that we ca
change the order of updates in different subevents. Also,
can associate earthquakes uniquely with the original unst
sites that triggered them. In the following, we will alway
define earthquakes in this way. An event that started witk
sites becoming unstable is counted ask earthquakes, sepa
rated by infinitesimal time delays and taking place in ar
trary order.

So we can assume without loss of generality that after
relaxation of an earthquake there is exactly one site that
a stress value greater than all the others and will be the s
of the next avalanche. The value of this stress immedia
after the earthquake has stopped will be calledzm . Its mean
value, averaged over all earthquakes, is denoted byzm. Since
we consider the large system limit,zm will not be correlated
with the size of the previous avalanche. This is our cruc
assumption and it depends on the fact that we can neg
‘‘global’’ avalanches whose size is comparable to the to
size of the system. In this limit the model thus become
branching process with time-dependent branching rates.
shall later verify that this assumption is self-consistent an
true in simulations.

The average increase of the force on each of theN sites
between two earthquakes due to the external driving is t
given by 12zm. On the other hand, each discharge dissipa
an average value of (12na)zunst, wherezunst is the mean
force on the unstable sites, averaged over all discharg
events. In the stationary state, when(zi fluctuates around a
constant value, the external increase must be exactly c
pensated for by the average dissipation. This gives an e
formula involving the average earthquake size^s& defined as
the mean number of discharges per earthquake,

~12na!zunst̂ s&5N~12zm!. ~3!

Notice that the product of averages on the left-hand side d
not result from a factorization approximation but from th
definition of zunst and is exact. Therefore, this equation
correct even if the above-mentioned simplifying assumptio
are not true and holds thus also in the fixed neighbor vers
of the model. Since the left-hand side of this equation
mains finite forN→` ~as long asa,1/n!, we see that 1
2zm}1/N.

On the other hand, since the force increase between e
quakes is assumed to be with velocityv51, the average time
between two earthquakes is given by 12zm. On a ‘‘macro-
scopic’’ time scale where we neglect the duration of ear
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3946 56HANS-MARTIN BRÖKER AND PETER GRASSBERGER
quakes compared to the interquake times~this assumption is
inherent in the model!, the toppling rateis thus given by

s5
^s&

N~12zm!
5

1

~12na!zunst
. ~4!

This tells us how frequently each site discharges per t
unit. The rate tobe hit according to Eq.~2! is then given by
ns.

Let P(z) be the probability density for a given site t
have a force valuez ~from now on we shall consider onl
N5`!. Obviously,P(1) is the rate with which new earth
quakes are initiated, whileP(0)5s is the rate with which
new force-free sites are created by discharges. Therefor

^s&5P~0!/P~1!. ~5!

Similarly, Pj (z) denotes the joint probability density that
site has a valuez and was hit exactlyj times since its last
discharge. Since we consider onlyN5` and have argued
that global avalanches are negligible in this limit,P(z) and
Pj (z) do not fluctuate with time. Obviously, we have

P~z!5(
j 50

m

Pj~z!, zP@0,1#. ~6!

Because a hit increasesz at least by an amounta, eachPj (z)
vanishes exactly forz, j a. Therefore, the upper limitm in
the above sum is given by the largest integer for wh
ma<1. For later use we define the integrated distribution

P~z!5E
z

1

P~z8!dz8. ~7!

To obtainP0(z) we notice that the probability to be h
exactlyk times during a time intervalz, when the rate isns,
is given by the Poisson distribution

pk~z!5
1

k!
~nsz!ke2nsz. ~8!

This leads to

P0~z!5sp0~z!5se2nsz. ~9!

The otherPj (z) depend on the distribution of the amou
Dz that a site receives when it gets hit by a discharge. Thi
turn depends on the distribution of forces of unstable site
the moment of their discharge. We denote the density of
distribution byC(z). It is related tozunst by

zunst5E
1

`

zC~z!dz. ~10!

@Here and in the following, integrals over functions withd
peaks at the integration limits are understood as contain
all contributions from these peaks, *a

bf (x)dx
[ lime→0*a2e

b1e f (x)dx.# The first site of any earthquake dis
charges exactly withz51. This gives ad contribution to
C(z), with relative weight 1/̂s&. We can therefore make th
ansatz
e

h
s

in
at
is

g

C~z!5
1

^s&
d~z21!1C̃~z!. ~11!

The second term corresponds to all subsequent discha
About the functionC̃(z) we know that it has to vanish for al
z outside the interval@1,1/(12a)#. The upper limit would
be reached if an infinite earthquake contained a series
successive hits onto sites with maximum valuez51. This
upper limit could be surpassed only if a site were hit sim
taneously by two discharges, but the chance for this is z
on an infinite lattice. The amount of forceDz that a discharg-
ing site drops onto each of then random neighbors is then
distributed according to

Q1~Dz!5a21C~Dz/a!, supp Q15@a,a/~12a!#.
~12!

Similar to Eq.~11!, we can writeQ1(Dz) as

Q1~Dz!5
1

^s&
d~Dz2a!1Q̃1~Dz!. ~13!

The convolution integrals

Qk~Dz!5E
a

Dz

Qk21~Dz2Dz8!Q1~Dz8!dDz8, k>2

~14!

then give us the probability densities for the total increase
force when a site was hit exactlyk times. Note thatQk(Dz)
vanishes forDz outside the interval@ka,ka/(12a)#. We
see finally that everyPj (z) has to obey

Pj~z!5P0~0!E
j a

z

p j~z2Dz!Qj~Dz!dDz

5
s

j ! Ej a

z

@ns~z2Dz!# je2ns~z2Dz!Qj~Dz!dDz.

~15!

Let us now return to the functionC̃(z), which describes
the distribution of sites that have become unstable by be
hit by a discharge. It is obtained by the convolution of t
distribution of~stable! sites before they are hit, with the dis
tribution of amounts received during the destabilizing d
charge,

C̃~z!5nQ~z21!E
a

a/~12a!

P~z2Dz!Q1~Dz!dDz.

~16!

Here Q(x) is the Heaviside step function. It takes into a
count thatC̃(z) is supposed to describe only those sites t
actually become unstable. The factorn takes into account
that each discharge event, the probability density of which
given by the integrand, gives rise ton potentially unstable
sites. The integration limits are given by the support ofQ1 ;
see Eq.~12!.

Let us now consider the integral ofC̃(z) over all z. In-
terchanging the integrations we obtain
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E
1

`

C̃~z!dz5nE
a

a/~12a!

dDz Q1~Dz!E
1

`

P~z2Dz!dz.

~17!

The inner integral on the right-hand side is justP(12Dz)
@see Eq.~7!#, while the left-hand side is equal to 121/̂ s&
due to Eq.~11!. Rearranging terms, we arrive thus at a s
ond equation for̂ s&,

^s&5F12nE
a

a/~12a!

P~12z!Q1~z!dzG21

. ~18!

We claim that the above equations are complete in
sense that they fix the solution uniquely for eacha,1/n. To
show this and to provide also a practical method to so
them numerically for not too largea, we give a recursion
scheme that converges to the solution as the iteration levr
tends to infinity, at least for sufficiently smalla. For larger
values ofa the recursion might not be practical, but the s
of equations should still fix the solution by continuity. Notic
that different recursion schemes are in principle poss
where the order of replacements is changed in various pla

To start the recursion, we select a desired accuracyh and
choose the initial distributionQ1(z)(0) in some arbitrary
way. It need not even be normalized. For smalla, a good
choice isQ1(z)(0) constant. Fora'1/n we can also take
Q1(z)(0)5d(z21/n). In the recursive step fromr 21 to r
we do the following: ~i! ~re!normalize Q1(z)5const
3Q1

(r21)(z) with const5@*Q1
(r21)(z)dz#21; ~ii ! computes from

Eqs.~4!, ~10!, and~12!,

s5aF ~12na!E
a

a/~12a!

Q1~z!zdzG21

; ~19!

~iii ! computeQk(z) for k.1 by means of Eq.~14!; ~iv!
computeP0(z)5se2nsz, computePk(z) for k.0 by means
of Eq. ~15!, and obtainP(z) as (kPk(z); ~v! compute the
new^s& from Eq.~5!; ~vi! compute the newQ1(z) from Eqs.
~12!, ~11!, and~16!,

Q1
~r !~z!5

1

^s&
d~z2a!1

n

a
Q~z2a!E

a

a/~12a!

3P~z/a2z!Q1~z!dz; ~20!

~vii ! if s or ^s& have changed by a fraction larger thanh,
then go to~i!; ~viii ! verify that the normalization constant i
step ~i! is unity within some acceptable error and that^s&
satisfies Eq.~18!.

We have not shown formally that this iteration alwa
converges, but we have done extensive numerical inves
tions. The scheme converges very fast and stably for smaa,
but convergence is slowed down whena→1/n. For this rea-
son we had problems obtaining solutions fora>0.24 when
n54, although the recursions shows no sign for diverge
even in such extreme cases. Also, numerical errors in
integration routines tend to accumulate fora→1/n, render-
ing in particular the estimate of̂s& problematic. Since the
integrands are not analytic functions, it does not make se
to use very sophisticated integration routines. We used
extended trapezoidal rule with up to 104 points.
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Results forn54 are shown in Fig. 1, where we also com
pare the results with straightforward simulations of Eqs.~1!
and ~2!. For the latter we typically usedN5106 to 83106

and discarded transients of up to 23106 iterations. No dif-
ference between theory and simulation is detectable in Fig
This shows that the numerical integration was sufficien
accurate, the iterations had converged,N was sufficiently
large to have negligible finite-size corrections, and the d
carded transients were sufficiently long. Qualitatively, Fig
is similar to Fig. 1 in@12#, but the first peak in that pape
seems much too high. It is not clear whether this results fr
the BCs used in that paper or from transients. Fora50.23,
we findP(0)'11.5 both from simulations and from the an
lytic solution, whileP(0)'33 is quoted in@12#.

In Fig. 2 we shows and ^s& as functions ofe5124a.
We see thats'1/e, while ^s& diverges much faster whe
a→1/4. Finally, in Fig. 3 we showQ̃1(z). This shows a
very interesting qualitative change asa approaches 1/4. Fo
a,0.23,Q̃1(z) is centered atz,1/4. Its center moves to the
right asa increases, reaching a value slightly larger than
for a'0.233. After that, its center moves very little and
just shrinks slowly to ad function centered at 1/4.

The most important result is that we see no hint of a
singularity fora,1/4, as predicted in@12#, and we also see
no mechanism that could lead to such a singularity. Inde
we can prove rigorously that̂s&,` for all a,1/n. This
follows simply from the fact thats<1/(12na) due to Eq.
~4! and ^s&5s/P(1)<s/P0(1)5ens due to Eqs.~5! and
~9!. Conversely, this argument shows thatP(1) must tend to
0 for e→0, as also shown by the numerics.

According to@12#, a singularity with^s&→` should oc-
cur for n54 at a52/950.222... . We believe that this i
due to unjustified assumptions made in@12#. Another impor-
tant result is thatP(z) is finite and nonzero atz51 and at
z50. This shows that global earthquakes have indeed

FIG. 1. Probability densityP(z) againstz. The continuous lines
are the predictions from the theory and the points show the res
obtained from simulations. They fall perfectly on top of each oth
on the scale of this figure. The four curves are fora50.20, 0.21,
0.22, and 0.23, in order of increasing sharpness of the peaks.
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3948 56HANS-MARTIN BRÖKER AND PETER GRASSBERGER
effect, as they would lead to a depletion ofP(z) at z51 or
an infinity atz50 due to Eq.~5!.

IV. THE LIMIT a˜1/n

Figure 1 suggests thatP(z) tends to a sum of fourd peaks
at multiples ofa, for a→1/4. More generally, we expec
P(z) to tend towards a sum ofn d peaks atz5k/n,
k50,...,n21 ~this is reminiscent of a generalized sandp
model with real-valued heights by Zhang@14#!. We shall see
that this is indeed a valid solution after proper rescalings os
and ^s&.

Formally we introduce

FIG. 2. A log-log plot ofs and^s& againste5124a. Continu-
ous lines are from theory, points from simulations.

FIG. 3. Q̃1(Dz) againstDz for the same values ofa as in Fig. 1
and in addition fora50.233 anda50.236. For clarity, only theo-
retical predictions are shown. The cusps are atDz5a1a2 and
correspond to the maximalDz transferred by first generation de
scendents of the avalanche seed.
e512an ~21!

and consider the limite→0. We shall argue that a self
consistent solution forP(z) in this limit is a sum ofd peaks.
If this is true, only sites that have alreadyz'(n21)/n will
become unstable by receiving an extraDz'1/n and hence
zunst→1 for e→0. From this we see, on the one hand, th
s51/e to leading order in 1/e, which in turn gives
spk(z)→n21d(z) for each value ofk. On the other hand, it
givesC(z)5d(z21) andQ1(Dz)5d(Dz21/n). The latter
implies Qk(Dz)5d(Dz2k/n) for any k>2, which finally
gives

P~z!5
1

n (
j 50

n21

d~z2 j /n!, ~22!

i.e. our initial assumption was self-consistent.
In spite of the simplicity of this solution, we should b

careful in interpreting it, as several limits are involved. T
easiest way is to take first the infinite volume limit, and th
e→0. If we want to take the limite→0 first, we have to use
absorbing sites that mimic absorbing BCs, but it is noa
priori clear how their number should scale withN ~for a
related problem in a mean-field version of the Abelian sa
pile model see@15,16#!.

While the behavior exactly ata51/n is thus well under-
stood, we were not able to find an analytic solution for fin
e. But we can give approximate solutions for smalle and
predict the behavior of̂s& for e→0. For small but finitee,
we approximate eachQj (z) by a d function atz5 j /n. Then
Pj (z) is roughly given by

Pj~z!'Q~z2 j /n!
s

j !
@~z2 j /n!s# je2~z2 j /n!s. ~23!

From this, Eq.~5!, and the fact thatP(0)5s we get

^s&5s/P~1!'s/Pn21~1!'
~n21!!

sn21 es'~n21!! en21e1/e.

~24!

There are substantial corrections to this, mainly from
contribution ofPn(1) to P(1), which are hard to estimate
Thus the actual values of^s& are smaller than given by Eq
~24!, but Eq. ~24! gives the correct trend. In particular,
explains why^s& diverges extremely fast fora→1/n, mak-
ing simulations in this limit very difficult.

V. EARTHQUAKE STATISTICS

In the previous sections we have only studied the fo
distribution and the average earthquake size. In order to
cuss the distribution of earthquake sizes and durations,
need some more definitions and some basic results from
theory of branching processes as found, e.g., in@17#.

For any integeri>1 we definepi as the probability that a
site becomes unstable if it is hit by a discharge event dur
the (i 21)st generation of an earthquake and will therefo
discharge itself in thei th generation. For the first generatio
p1 is the probability that a site that receivesDz5a becomes
unstable. Thus, simplyp15P(12a). For generala, the
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other probabilitiespi depend on the height distribution of th
unstable sites in the previous generation. But fore→0 all
discharging sites havez51 andpi is simply the probability
that the hit site is in the (n21)st peak,pi5p51/n for all
i .0.

In the following we shall therefore discuss only the ca
e50, deferring the general case to the end of this sect
We assume thus thatpi5p51/n for all i .0. The probability
that an unstable site createsl unstable offsprings in the nex
generation is then given by

wl5S n
l D ~12p!n2 l pl , ~25!

with the generating function

g~u!5(
l 50

n

ulwl5~12p1up!n. ~26!

With the use ofg(u) it becomes very easy to calculate r
cursively the distributions of the size and the duration of
earthquakes. In order to do this we introduce the iterates

g0~u!5u, g1~u!5g~u!,

gm11~u!5g@gm~u!#, m51,2,... . ~27!

The probability that the earthquake stops in thetth time step
is given by@17#

Pt5gt~0!2gt21~0! with t51,2,... . ~28!

The integrated distribution

Pt5 (
t85t

`

Pt8512gt21~0! ~29!

denotes the probability that an avalanche lasts for gre
than or equal tot time steps. Equation~29! can be used
directly to calculatePt for small t, whereas for larget we
use the asymptotic behavior. The chain of identities

Pt11512gt~0!512g„gt21~0!…512g~12Pt!512~1

2pPt!
n ~30!

leads to

d

dt
Pt.Pt112Pt52S n

2D p2Pt
21o~Pt

3!, ~31!

with the solution

Pt;
2n

n21
t21. ~32!

This is a special case of the general theorem@17#

Pt;
2

tg9~1!
~33!

for a critical branching process.
e
n.

e

er

The next quantity of interest is the size distribution of t
earthquakes. WithDs we denote the probability that the siz
of an avalanche is exactlys. While D15(121/n)n is obvi-
ous, the calculation ofDs for s.1 proceeds as in@18#. We
first denote byak

(s) thekth Taylor coefficient of@g(u)#s, i.e.,
@g(u)#s5a0

(s)1a1
(s)u1a2

(s)u21••• . A theorem due to
Dwass@19# tells us then that

Ds5
1

s
as21

~s! , s>1. ~34!

In the present case, we have

ak
~s!5S ns

k D ~12p!ns2kpk, ~35!

leading to

Ds5
1

s S ns
s21D ~12p!~n21!s11ps21. ~36!

The local limit theorem of Moivre-Laplace states that in t
limit s→` the distributionDs with p51/n tends to

Ds'
1

A2p~121/n!
s23/2. ~37!

This means that the system becomes critical fora51/n and
the critical exponents take the same values as for mean-
percolation@20#.

In the subcritical phase the arguments are more tedio
Let us denote byci(z) the joint probability distribution that a
discharge happens during thei th generation of an earthquak
and that the discharging site has forcez. It is related toC(z)
and topi by

C~z!5
1

^s&
d~z21!1c1~z!1c2~z!1••• ~38!

and

pi5
1

^s& Ea

a/~12a!

ci~z!dz. ~39!

The functionsci(z) satisfy a recursion relation similar to Eq
~16!,

ci~z!5nQ~z21!E
1

1/~12a!

P~z2az8!ci 21~z8!dz8,

~40!

with c0(z)5d(z21)/^s&. Again, we were not able to solv
this analytically. But given a numerical estimate ofP(z), we
can solve it numerically forci(z), i 51,2,..., from which we
obtainpi by integration. Again, this was done only forn54.
For each considered value ofa we found thatpi increases
monotonically withi and converges very quickly to a con
stant value less than 1/4. This is easy to understand.
increase is due to the fact that the first discharging site
z51, while all subsequent ones havez slightly larger than 1.
The fact thatpi,1/4 reflects the fact that we are dealing wi
a subcritical branching process.
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In contrast to the critical case we now have a tim
dependent~nonautonomous! branching process, i.e., the ge
erating functiong(u) depends on the generation. The ma
ematical treatment now becomes more tedious. For
further comparison between simulations and theory we th
fore used the theoretically obtainedpi to simulate a branch
ing process and compared the results with direct simulat
of the OFC model. Figures 4 and 5 show that the agreem
is essentially perfect, except for larges and t and for
a50.23. The discrepancies seen there arise from the
merical problems mentioned in Sec. III.

FIG. 4. Integrated distributionPt . Again, lines show the theo
retical predictions and points are from simulations. Increasing fr
left to right, a takes the same values as in Fig. 1. The dashed
shows Eq.~32!.

FIG. 5. Integrated distributionDs5(s85s
` Ds8 with the samea

values as in Fig. 4. The dashed line shows the scaling
Ds5@2/A2p(121/n)#s21/2.
-

-
e

e-
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nt
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VI. THE FEDER-FEDER MODEL

Up to now we have considered only the OFC model, b
our methods are much more general. To illustrate this,
shall discuss in this section the random neighbor version
model introduced by Feder and Feder@21#. The Feder-Feder
~FF! model is identical to the OFC model, with the on
exception that Eq.~2! is replaced by

zj k
→zj k

1a, k51,...,n. ~41!

This means that a site hit by a discharge always receive
fixed amounta regardless of thez value of the discharging
site. This leads to a significant simplification of the equatio
of motion. To derive them, we have first of all to notice th
the toppling rateis now given by

s5
^s&

N~12zm!
5

1

zunst2na
. ~42!

Sincezunst>1, it is not a priori clear whethers diverges in
the limit a→1/n. But we will show that this is indeed the
case.

The main simplification arises from the fact thatQ1(Dz)
uncouples fromC(z) and is given by

Q1~Dz!5d~Dz2a!. ~43!

From this one obtains immediately

Qk~Dz!5d~Dz2ka! ~44!

@see Eq.~14!# and

P~z!5(
j 50

m

Pj~z!5(
j 50

m
s

j !
@ns~z2 j a!# j

3Q~z2 j a!e2ns~z2 j a!, ~45!

wherem is again the largest integer less than or equal to 1a.
To obtain s as a function ofa, we use the normalization
condition*0

1P(z)dz51, which gives

n5(
j 50

m
1

j ! E0

~12a j !ns

dx xje2x. ~46!

For a close to 1/n we havem5n and this condition can be
rewritten as

E
0

ens

dx xne2x5 (
j 50

n21
n!

j ! E
~12a j !ns

`

dx xje2x, ~47!

where we have used againe512na. From this it is easily
seen thats→` for e→0. Otherwise, the left-hand sid
would tend to zero in this limit, while the right-hand sid
would remain nonzero. But ifs diverges, the right-hand sid
is dominated by the term withj 5n21. Keeping only domi-
nant terms, we arrive at

s'~n11!ln~1/e!. ~48!

The mean avalanche size can again be calculated from
~5!,

e

w
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^s&5s/P~1!5F (
j 50

m

p j~12 j a!G21

. ~49!

Obviously ^s& is finite for all a,1/n and diverges for
a→1/n. In this limit the sum is dominated by the term wit
j 5n, giving

^s&'n! ~nse!2n;e2n, ~50!

up to constant and logarithmic factors ine, which could eas-
ily be computed.

Thus s and ^s& both diverge much slower than in th
OFC model. This reflects the increased dissipation in the
model. Exact values ofs and^s& obtained numerically from
Eqs.~46! and~49! are shown in Fig. 6. For smalle one finds
good agreement with the asymptotic predictions. Avalan
dynamics can be treated exactly as in the OFC model.

VII. CONCLUSION

Our results show clearly that there are neither scaling
phase transitions in the random neighbor version of the

FIG. 6. A log-log plot ofs and ^s& againste5124a for the
Feder-Feder model.
et

ys
F

e

r
s-

sipative Olami-Feder-Christensen earthquake model. Sca
is observed only in the conservative limit, in which case o
has a critical branching process. This is in direct contrad
tion to claims in@12#. The latter was based on approxima
random neighbor equations, while the present work is ba
on the exact equations. These equations were solved num
cally, giving excellent agreement with direct simulations
the model.

The most surprising result was the very fast increase
the average earthquake size as one approaches the con
tive limit. Obviously this is a consequence of the nonlocal
of the interaction, since this implies that one can have
tremely large earthquakes without having large effects
cally. Nevertheless, avalanche size distributions decay ex
nentially for any nonzero dissipation.

Our findings support the view@6# that scaling in the OFC
model with inhomogeneous boundary conditions is due t
subtle interplay between partial synchronization and des
chronization. The inhomogeneity of the BCs drives the s
chronization in the bulk, building up large coherent patch
but occasionally the driving is too strong and the synchro
zation breaks down. Explicit observations of these patte
@6,8# support this view. In a random neighbor model su
structures cannot build up, of course, and the mechan
driving the system into a self-organized critical state is a
sent.

While we concentrated here on the OFC model,
showed that our methods can also be applied in other rel
models. In particular, we studied the Feder-Feder mode
some detail. We showed that it also has no phase trans
in the dissipative regime and that the toppling rate and
mean avalanche size diverge in the conservative limit.
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