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We derive the exact equations of motion for the random neighbor version of the Olami-Feder-Christensen

earthquake model in the infinite-size limit. We solve them numerically and compare them with simulations of
the model for large numbers of sites. We find perfect agreement. But we do not find any scaling or phase
transitions, except in the conservative limit. This is in contradiction to claims by Lise and Jétsen Rev.
Lett. 76, 2326(1996] based on approximate solutions of the same model. It indicates again that scaling in the
Olami-Feder-Christensen model is only due to partial synchronization driven by spatial inhomogeneities.
Finally, we point out that our method can be used also for other self-organized criticality models and treat in
detail the random neighbor version of the Feder-Feder mg8&063-651X97)04210-4

PACS numbsgps): 05.40:+j, 05.70.Ln, 91.30.Bi

I. INTRODUCTION boundary[6]. Subsequent simulations with periodic BCs
showed no scaling9,6], as did simulations with frozen ran-

During the past ten years more than 2000 publicationslomness but without diverging length scald®,11]. The
were concerned with the idea of self-organized criticalitybasic source of scaling in the OFC model is the slow buildup
(SOQ proposed by Bak, Tang, and Wiesenf¢l]. They  Of large coherent domains in which the system itself is ho-
introduced a nonequilibrium system, the so-called sandpiléhogeneous, but which are driven by regions where the sys-
model, which is driven slowly by adding single sand grainstem is not homogeneous.
at random positions. Without any control parameter to fine- Although the definitions of these SOC models are simple
tune, it evolves into a critical state. In this state the systennd they are easily simulated on a computer, only few exact
reacts to the external drive with a series of relaxation eventesults are known. Most of the difficulties in the analytical
(avalanches It becomes critical in the sense that the spatialtreatment arise from the spatial correlations due to the inter-
and temporal distributions of these avalanches obey poweactions of the particles. In a mean-field theory, which is the
laws, indicating that any characteristic scales in space an@st step towards a detailed understanding, these correlations
time are lost. The attribute “self-organized” is to stress theare simply neglected. A more refined strategy to avoid spa-
absence of a fine-tuned control parameter. tial correlations is to replace the nearest-neighbor interac-

A crucial point in understanding the robust scaling of thetions by interactions between random sites. For the OFC
Bak-Tang-WiesenfeldBTW) model is the existence of a model this was already attempted by Lise and Jeneh
conservation lay2]: The total amount of sand in the system But in that paper additional assumptions and approximations
is conserved if boundary effects and external perturbation¥ere made that are hard to justify. With these assumptions, a
are neglected. transition was found from non-SOC to SOC atsignifi-

In the frame of this concept, Olami, Feder, and Chris-cantly less thanx.. This is very surprising, as we argued
tensen introduced a nonconservative “continuous cellulagbove that spatial structures are crucial for the emergence of
automaton” [3] as a specific realization of the two- scaling and any such structures are of course eliminated in
dimensional Burridge-Knopoff earthquake mop#ll Details ~ the random neighbor version.
of this model will be described below. In contrast to the In the following we study the random neighbor model in
BTW model, it is not conservative in general. It involves a detail without any further approximations. We will be led to
parameter and a conservation law holds only for a specific & complete set of equations that allow us to calculate numeri-
value a= a,. It was found in[3,5] and subsequent simula- cally all the relevant quantities. We will see that there is no
tions [6] that the system displays power-law behavior in aSOC in the dissipative regime of the control parameter. In
wide range of the control paramem(not 0n|y nearac) and the case of conservation the exact solution shows that the
the critical exponents depend an Thus the model seems to System becomes a critical branching process equivalent to
show SOC and conservation seems not to be a necessafjtical percolation on a Bethe tree and the critical exponents

condition. take their mean field values.
But, on the other hand, it seems that spatial inhomogene-
ities are crucial for the observation of scaling in the Olami- Il. MODEL

Feder-Christense(OFC) model[6—8]. In the original paper

by Olami, Feder, and Christensen the boundary conditions The model involves on a set di sites, each of them
(BCs were not periodic, which induced an inhomogeneityequipped with a continuous stre@s “force” ) variablez; .
with a diverging length scale in the thermodynamic limit. Eachz can take any value greater than or equal to O, but
This inhomogeneity of the BCs leads to partial synchronizaonly values less than 1 are stable. After having initialized
tion in the bulk that is both driven and destroyed by theeach site with a randomly chosen valye [0,1], the system
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evolves according to the following rules. [Il. RANDOM NEIGHBOR THEORY

. @) All z are smulﬁaneously and continuously increased In the OFC model, there is a finite chance that two sites
with the same speegl=1. b table simultaneously during the continuous in-
(ii) If any z exceeds the threshold value 1 the above ecome unstat y 9 o
driving stops and the forces are redistributed in the followingc.rease(l)' It anses from th_e flonzero probablllty that two
way: All unstable sites discharge simultaneously sites that had d_lscharg_ed n the same previous earthquake
' ! have not been hit by a discharging neightmrhave been hit
by the same neighborsaintil they reachz= 1. In the lattice
version this implies that the notion of an earthquake itself
becomes a bit delicate: Should we consider an event that was
For each of these discharging sitesandom ‘“neighbors”  triggered simultaneously by two sites as one earthquake or

j1.---.jn are chosen and their stress variables are increase@o? In the off-lattice version we still have a nonzero chance

z,—0 VZi21. (1)

by a fixed fraction ofz; , for such events. But on an infinite lattice the subquakes fol-
lowing each unstable site will not overlap. Thus they will
3~z +az;, k=1,...n. 2) evolve completely independently. This means that the model

becomes effectively Abeliafil3] in the sense that we can
) ) ) , change the order of updates in different subevents. Also, we
The integem is constant, but otherwise arbitrary. If the ap- ¢4 associate earthquakes uniquely with the original unstable
plication of Eq.(2) creates new unstable sites, rule) is  gjtes that triggered them. In the following, we will always
again applied in the next time step, again simultaneously fOfjefine earthquakes in this way. An event that started with
all unstable sites. This procedure is repeated until all sites aAlGtes becoming unstable is countedkagarthquakes, sepa-

stable. After that, the system is again driven according tq4teq py infinitesimal time delays and taking place in arbi-
rule (i), until at least one site with,=1 appears. A series of trary order.

causally connected discharging events is called an earth- g4 e can assume without loss of generality that after the
quake or an avalanche. Its siseis measured by the total tg|axation of an earthquake there is exactly one site that has
number of discharges. If a site dischargesimes during an 5 giress value greater than all the others and will be the seed
avalanche, it is counten-fold in the calculation of. The o the next avalanche. The value of this stress immediately
durationt of an earthquake is defined as the number offer the earthquake has stopped will be cafigd Its mean
sweeps thr(_Jugh the lattice necessary to get a stable configyame, averaged over all earthquakes, is denotezhpyince
ration. Obviouslys, as well ast, is always greater than or e consider the large system limi,, will not be correlated

equal to 1. o with the size of the previous avalanche. This is our crucial
The parametes that controls the dissipation can take any assumption and it depends on the fact that we can neglect

value between 0 andi/«>1/n is unphysical since sooner «giohal* avalanches whose size is comparable to the total
or later an infinite and ever-growing avalanche would ogEcur gj7e of the system. In this limit the model thus becomes a
Only for a=1/n is the system conservative. Note that thep anching process with time-dependent branching rates. We
randomness of the neighbors appearing in E).is an-  gpq]| Jater verify that this assumption is self-consistent and is
nealed: For each discharging event, theandom neighbors  1,e in simulations.
are chosen anew. Obviously, this prevents any buildup of The average increase of the force on each ofNhsites
spatial correlations in the values pf _ _ between two earthquakes due to the external driving is then
The numerical calculaﬂonslas well gs_the S|mulat|ons_ar%iven by 1-Z. On the other hand, each discharge dissipates
restricted to the case=4. Obviously this is most appropri- an average value of (@Ana)Zye WhereZ, is the mean
ate for a mean-field theory of the two-dimensional OFCtyrce on the unstable sites, averaged over all discharging
model. But our analytic results are more general and hold fogents. In the stationary state, whBg; fluctuates around a
anyn=2. . _ . constant value, the external increase must be exactly com-
As well known, the origina(nearest-neighbowrersion of pensated for by the average dissipation. This gives an exact

the model is very sensitive to the choice of B@6]. Any  f5rmy1a involving the average earthquake siz defined as
BCs other than periodic introduce inhomogeneities that arghe mean number of discharges per earthquake
crucial in building up the spatial structures that manifest '

themselves in nontrivial avalanchg8—8|. For the random (1—na)zZyns(S)=N(1—2zy). 3
neighbor version, nonperiodic BCs were used ig]. This

also introduces spatial inhomogeneity, which is, howeverNotice that the product of averages on the left-hand side does
completely irrelevant for the dynamics, “space” being a not result from a factorization approximation but from the
dummy concept in a random neighbor model. In addition, thedefinition of z,,; and is exact. Therefore, this equation is
BCs used iN12] lead to specific finite-size corrections that correct even if the above-mentioned simplifying assumptions
might be not easy to disentangle from the true asymptoti@re not true and holds thus also in the fixed neighbor version
behavior. In contrast, we treat all sites equally in the presemf the model. Since the left-hand side of this equation re-
paper, mimicking thereby periodic BCs. In addition, we shallmains finite forN—~ (as long asa<1/n), we see that 1
study only the infinite-size limit. More precisely, we shall —Z,«<1/N.

formally work with a finite numbeN of sites, but will un- On the other hand, since the force increase between earth-
derstand that we are only interested in the lidit-~. For  quakes is assumed to be with veloaity: 1, the average time
finite sizes there are correlations that make the study of thbetween two earthquakes is given by Z,,. On a “macro-
model rather awkward. scopic” time scale where we neglect the duration of earth-



3946 HANS-MARTIN BROKER AND PETER GRASSBERGER 56

guakes compared to the interquake tinhés assumption is 1 -
inherent in the modg| the toppling rateis thus given by C(2)= @5(2—1)+C(Z)- (11)
o= <S>_ = ! — (4)  The second term corresponds to all subsequent discharges.
N(1-2zy) (1=na)zung About the functionC(z) we know that it has to vanish for all

z outside the interval1,1/(1— «)]. The upper limit would

%e reached if an infinite earthquake contained a series of
successive hits onto sites with maximum vakrel. This
upper limit could be surpassed only if a site were hit simul-
taneously by two discharges, but the chance for this is zero
on an infinite lattice. The amount of foréez that a discharg-

ing site drops onto each of threrandom neighbors is then
distributed according to

This tells us how frequently each site discharges per tim
unit. The rate tdoe hitaccording to Eq(2) is then given by
no.

Let P(z) be the probability density for a given site to
have a force value (from now on we shall consider only
N=<). Obviously,P(1) is the rate with which new earth-
quakes are initiated, whil®(0)= o is the rate with which
new force-free sites are created by discharges. Therefore,

(s)=P(0)/P(1). (5) Qu(az)=a""C(azla),  supp Ql:[“’“/(l_“)]ilz

Similarly, P;(z) denotes the joint probability density that a Similar to Eq.(11), we can writeQ(Az) as
site has a valug and was hit exactly times since its last S !

discharge. Since we consider o=« and have argued 1 _
that global avalanches are negligible in this linf(z) and Qi(Az)= gﬁ(AZ—a)JrQl(AZ)- (13
P;(2) do not fluctuate with time. Obviously, we have

m The convolution integrals
F><z>=2O Pi(2), ze[0,1]. (6) N
" QuAZ)= | Qu-1(Az—AZ')Qy(AZ')dAZ’, k=2
Because a hit increasesat least by an amount, eachP;(2) ‘ (14)

vanishes exactly for<j«. Therefore, the upper limin in
the above sum is given by the largest integer for whichthen give us the probability densities for the total increase of
ma=1. For later use we define the integrated distribution asorce when a site was hit exactkytimes. Note thaQ,(Az)
. vanishes forAz outside the intervalka,ka/(1—a)]. We
P(z)=j P(z')dZ. 7) see finally that every;(z) has to obey

z

To obtainPy(z) we notice that the probability to be hit
exactlyk times during a time interva, when the rate iso,
is given by the Poisson distribution

P;(2)=P(0) J]_Z m(z—Az)Qj(Az)dAz

z
— ja—No(z—A
=5 ja[na(z—Az)]Je no(z-42Q,(Az)dAz.

1
m(Z)= H(naz)ke—“ﬂ. (8) (15)
This leads to Let us now return to the functio&(z), which describes
the distribution of sites that have become unstable by being
Po(z)=0my(z)=0e "% (9)  hit by a discharge. It is obtained by the convolution of the

distribution of (stablg sites before they are hit, with the dis-
The otherP;(z) depend on the distribution of the amount tribution of amounts received during the destabilizing dis-
Az that a site receives when it gets hit by a discharge. This icharge,
turn depends on the distribution of forces of unstable sites at
the moment of their discharge. We denote the density of this =, _ _ al(1=a) _
distribution byC(2). It is related tozy— by C(2)=n6(z-1) f . P(zmA2)Qi(Az)dAz
(16)

Zunst= L 20(z)dz (10 Here ©(x) is the Heaviside step function. It takes into ac-
count thatC(z) is supposed to describe only those sites that
[Here and in the following, integrals over functions with actually become unstable. The factortakes into account
peaks at the integration limits are understood as containinthat each discharge event, the probability density of which is
all  contributions from these peaks, [ gf(x)dx given by the integrand, gives rise topotentially unstable
E|im€_)0fgj f(x)dx.] The first site of any earthquake dis- sites. The integration limits are given by the supportQf
charges exactly witte=1. This gives ad contribution to  see Eq(12). _
C(z), with relative weight 1fs). We can therefore make the Let us now consider the integral &(z) over all z. In-
ansatz terchanging the integrations we obtain
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12 T T T T

L al(1-a) ®
J C(z)dz=nj dAz Ql(Az)f P(z—Az)dz
1 @ 1
17

The inner integral on the right-hand side is jitl—Az)
[see Eq.(7)], while the left-hand side is equal to-11Ks)
due to Eq.(11). Rearranging terms, we arrive thus at a sec-
ond equation foKs),

P(2)

-1

al(1—a)
1—nj P(1-2)Q4(2)dz (18

(s)=

We claim that the above equations are complete in the
sense that they fix the solution uniquely for eactil/n. To
show this and to provide also a practical method to solve
them numerically for not too large, we give a recursion
scheme that converges to the solution as the iteration tevel
tends to infinity, at least for sufficiently small. For larger
values ofa the recursion might not be practical, but the set
of equations should still fix the solution by continuity. Notice
that different recursion schemes are in principle possible FIG. 1. Probability density’(z) againstz. The continuous lines
where the order of replacements is changed in various placedfe the predictions from the theory and the points show the results

To start the recursion, we select a desired accurpapd obtained from sim_ula_tions. They fall perfectly on top of each other
choose the initial distributiorQl(z)(o) in some arbitrary on the scale of 'thIS figure. .The fogr curves are dor0.20, 0.21,
way. It need not even be normalized. For smalla good 0.22, and 0.23, in order of increasing sharpness of the peaks.
choice isQ4(2)® constant. Fora~1/n we can also take
Q1(2)@=5(z—1/n). In the recursive step from—1 tor
we do the following: (i) (re)normalize Q,(z)=const
x QI I(2) with const=[fQY(2)dz]%; (ii) computeo from
Egs.(4), (10), and(12),

Results fom=4 are shown in Fig. 1, where we also com-
pare the results with straightforward simulations of Ed$.
and (2). For the latter we typically useN=10° to 8x 1¢°
and discarded transients of up t20 iterations. No dif-
ference between theory and simulation is detectable in Fig. 1.
-1 This shows that the numerical integration was sufficiently

: (19 accurate, the iterations had convergétwas sufficiently
large to have negligible finite-size corrections, and the dis-
carded transients were sufficiently long. Qualitatively, Fig. 1
is similar to Fig. 1 in[12], but the first peak in that paper
seems much too high. It is not clear whether this results from
the BCs used in that paper or from transients. &er0.23,
we find P(0)=~11.5 both from simulations and from the ana-

o=«

al(1—a)
(1—na)J Q1(2)zdz

(iii) computeQ,(z) for k>1 by means of Eq(14); (iv)

computeP(z) = ce™ "%, computeP,(z) for k>0 by means
of Eqg. (15), and obtainP(z) as2,P\(z); (v) compute the
new(s) from Eq.(5); (vi) compute the nev®,(z) from Egs.

(12), (11), and(16), lytic solution, while P(0)~33 is quoted if12].
1 n wl(1—a) In Fig. 2 we showo and(s) as functions ofe=1—4a.
(2)=-—~8(z—a)+ —0O(z— a)f We see thair~1/e, while (s) diverges much faster when
(s) o a a—1/4. Finally, in Fig. 3 we showQ,(z). This shows a
X P(zla—)Qq()d¢: (20 very interesting qualitative change asapproaches 1/4. For

a<0.23,0Q4(2) is centered at<<1/4. Its center moves to the

(vii) if o or (s) have changed by a fraction larger thgn  right ase increases, reaching a value slightly larger than 1/4
then go to(i); (viii) verify that the normalization constant in for a~0.233. After that, its center moves very little and it
step (i) is unity within some acceptable error and tHa} just shrinks slowly to & function centered at 1/4.
satisfies Eq(18). The most important result is that we see no hint of any

We have not shown formally that this iteration always singularity fora<1/4, as predicted ifi12], and we also see
converges, but we have done extensive numerical investigato mechanism that could lead to such a singularity. Indeed,
tions. The scheme converges very fast and stably for small we can prove rigorously thats)<e for all «<<1/n. This
but convergence is slowed down when-1/n. For this rea- follows simply from the fact thab<1/(1—n«a) due to Eq.
son we had problems obtaining solutions o= 0.24 when (4) and (s)=c/P(1)<a/Py(1)=€"" due to Egs.(5) and
n=4, although the recursions shows no sign for divergencé9). Conversely, this argument shows ti4tl) must tend to
even in such extreme cases. Also, numerical errors in th® for e—0, as also shown by the numerics.
integration routines tend to accumulate fer1/n, render- According to[12], a singularity with(s)— should oc-
ing in particular the estimate df) problematic. Since the cur for n=4 at «=2/9=0.222... . We believe that this is
integrands are not analytic functions, it does not make sensgue to unjustified assumptions madd 1r2]. Another impor-
to use very sophisticated integration routines. We used th&ant result is thaP(z) is finite and nonzero a¢=1 and at
extended trapezoidal rule with up to*points. z=0. This shows that global earthquakes have indeed no
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100000 —————— . —— e=1—an (21
| and consider the limite—0. We shall argue that a self-
10000 | i consistent solution foP(z) in this limit is a sum ofé peaks.
] If this is true, only sites that have already- (n—1)/n will
| become unstable by receiving an extxa~1/n and hence
1000 L i Zunsi— 1 for e—0. From this we see, on the one hand, that
) [ o=1/e to leading order in ¥, which in turn gives
5 om(z)—n"15(z) for each value ok. On the other hand, it
v 100 L ] givesC(z)=6(z—1) andQq(Az)=6(Az—1/n). The latter
[ ] implies Q,(Az)=8(Az—k/n) for any k=2, which finally
gives
10 o I 1 n-1
- P(2)== > 8(z—jIn), (22
i n ji=o
1 1

i.e. our initial assumption was self-consistent.
e In spite of the simplicity of this solution, we should be
careful in interpreting it, as several limits are involved. The
FIG. 2. Alog-log plot ofo and(s) againste=1—4«. Continu-  easiest way is to take first the infinite volume limit, and then
ous lines are from theory, points from simulations. e—0. If we want to take the limit— 0 first, we have to use
absorbing sites that mimic absorbing BCs, but it is aot
effect, as they would lead to a depletion®fz) atz=1 or  priori clear how their number should scale with (for a
an infinity atz=0 due to Eq.5). related problem in a mean-field version of the Abelian sand-
pile model sed15,16).
While the behavior exactly at=1/n is thus well under-
stood, we were not able to find an analytic solution for finite

Figure 1 suggests th&(z) tends to a sum of fouf peaks & BL_Jt we can gi\_/e approximate solutions for sm_al_land
at multiples ofa, for a—1/4. More generally, we expect Predict the behavior ofs) for e—0. For small but finitee,
P(2) to tend towards a sum oh & peaks atz=k/n, We approximate eacQ;(z) by a ¢ function atz=j/n. Then
k=0,...n—1 (this is reminiscent of a generalized sandpile Pj(2) is roughly given by
model with real-valued heights by Zhafit4]). We shall see
glnaotlg;s is indeed a valid solution after proper rescalings of Pi(2)~0(z—j/n) jgl[(z_j/n)o.]jef(zfj/n)o—_ (23)

Formally we introduce

IV. THE LIMIT  a—1/n

From this, Eq.(5), and the fact thaP(0)= o we get

60 T T T T T (n—1)!
(s)=0/P(1)=~alP,_1(1)~ T e’~(n—1)!e" " telle,
50 - 1 249
‘ There are substantial corrections to this, mainly from the
40 - contribution of P,(1) to P(1), which are hard to estimate.
Thus the actual values d¢6) are smaller than given by Eq.
E (24), but Eq. (24) gives the correct trend. In particular, it
5 30 T explains why(s) diverges extremely fast fox— 1/n, mak-

ing simulations in this limit very difficult.

20
V. EARTHQUAKE STATISTICS

- In the previous sections we have only studied the force
distribution and the average earthquake size. In order to dis-
/ N . cuss the distribution of earthquake sizes and durations, we
0 s e .
0.2 0.2 004 0.95 0.98 03 need some more definitions and some basic results from the
Az theory of branching processes as found, e.g[Lif].
For any integei=1 we definep; as the probability that a

FIG. 3. Q,(Az) againstAz for the same values af as in Fig. 1 Site becomes unstable if it is hit by a discharge event during
and in addition fora=0.233 ande=0.236. For clarity, only theo- the (i—1)st generation of an earthquake and will therefore
retical predictions are shown. The cusps areAat=a+ao? and  discharge itself in théth generation. For the first generation,
correspond to the maximalz transferred by first generation de- P; is the probability that a site that receivdg= a becomes
scendents of the avalanche seed. unstable. Thus, simplyp,=P(1—«). For generala, the

10
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other probabilitieg; depend on the height distribution of the ~ The next quantity of interest is the size distribution of the
unstable sites in the previous generation. But des0 all ~ earthquakes. WittDs we denote the probability that the size
discharging sites have=1 andp; is simply the probability —of an avalanche is exactly. While D;=(1—1/n)" is obvi-
that the hit site is in ther(—1)st peak,p;=p=1/n for all  ous, the calculation oD for s>1 proceeds as ifl8]. We
i>0. first denote bya(ks) thekth Taylor coefficient of g(u) 1, i.e.,

In the following we shall therefore discuss only the case{g(u)]*=al® +a®u+aPu?+--- . A theorem due to
€=0, deferring the general case to the end of this sectiombwass[19] tells us then that
We assume thus that=p=1/n for all i>0. The probability

that an unstable site creatiesinstable offsprings in the next 1y _
generation is then given by Ds=gast1, s=1 (34)
n
w=| | )(1—p)”"p', (25) In the present case, we have
. . . a(S): ns (1_p)nsfkpk (35)
with the generating function k k '
n leading to
g(w=2, u'w=(1-p+up)". (26) .
= ns
D=5 g1 /(AP St ps (36

With the use ofg(u) it becomes very easy to calculate re-

cursively the distributions of the size and the duration of therne |ocal limit theorem of Moivre-Laplace states that in the
earthquakes. In order to do this we introduce the iterates |imit s—o the distributionD, with p= 1/n tends to

Go(w)=u, gy(u)=g(u), 1
Dy~ —————5 %2, (37)
Im+2(W=0[gm(W)], m=12,... (27 v2m(1—1/n)
The probability that the earthquake stops in ttietime step ~ This means that the system becomes criticalder1/n and
is given by[17] the critical exponents take the same values as for mean-field
percolation[20].
Pi=0:(0)—0g¢-1(0) with t=1,2,... . (28 In the subcritical phase the arguments are more tedious.
Let us denote by;(z) the joint probability distribution that a
The integrated distribution discharge happens during th generation of an earthquake
" and that the discharging site has forcdt is related toC(z)
P=3 Pu=1-0.1(0) (29 M9OPIDY
t'=t 1
denotes the probability that an avalanche lasts for greater @) (s) d(z=1)+cy(D)+c(2)+ (38)
than or equal tat time steps. Equatiori29) can be used
directly to calculateP, for smallt, whereas for large we  and
use the asymptotic behavior. The chain of identities 1 fall-a
Pi=7e f ci(2)dz. (39
Piy1=1—-0¢(0)=1-9(g;-1(0))=1—-g(1-Py)=1—-(1 (s) Ja
—pPY)" (300 The functions;(z) satisfy a recursion relation similar to Eq.
(16),
leads to
11— a)
d n\ Lo, 5 ci(z)zn(a(z—l)fl P(z—az')c;_41(2')dZ,
giTt=Prea—Pe= (2>P Pr+o(Py), (31 40
with the solution with cy(z) = 8(z—1)/{s). Again, we were not able to solve
this analytically. But given a numerical estimateR(fz), we
2n can solve it numerically foc;(z), i=1,2,.., from which we
P~ no1t 32 Hptain p; by integration. Again, this was done only for=4.
For each considered value afwe found thatp; increases
This is a special case of the general theofam monotonically withi and converges very quickly to a con-
stant value less than 1/4. This is easy to understand. The
2 increase is due to the fact that the first discharging site has
P~ tg”(1) (33 z=1, while all subsequent ones haxslightly larger than 1.

The fact thap; < 1/4 reflects the fact that we are dealing with
for a critical branching process. a subcritical branching process.
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VI. THE FEDER-FEDER MODEL

Up to now we have considered only the OFC model, but
our methods are much more general. To illustrate this, we
shall discuss in this section the random neighbor version of a
model introduced by Feder and Fed21]. The Feder-Feder

(FF) model is identical to the OFC model, with the only
exception that Eq(2) is replaced by

zj,—7z, ta, k=1,...n. (41)
This means that a site hit by a discharge always receives a
fixed amounta regardless of the value of the discharging

shows Eq(32).

(42
retical predictions and points are from simulations. Increasing fronmthe limit «— 1/n. But we will show that this is indeed the
left to right, « takes the same values as in Fig. 1. The dashed linggse.

In contrast to the critical case we now have a time-
dependentnonautonomoysbranching process, i.e., the gen-

ematical treatment now becomes more tedious. For the

erating functiong(u) depends on the generation. The math-grom this one obtains immediately
further comparison between simulations and theory we there-
fore used the theoretically obtaingg to simulate a branch-

ing process and compared the results with direct simulationksee Eq(14)] and
of the OFC model. Figures 4 and 5 show that the agreement
is essentially perfect, except for large and t and for

a=0.23. The discrepancies seen there arise from the nu-

merical problems mentioned in Sec. lll.

FIG. 4. Integrated distributiof?, . Again, lines show the theo-

site. This leads to a significant simplification of the equations
of motion. To derive them, we have first of all to notice that
the toppling rateis now given by

(s)

o=

1

N(1-2zy) Zys—Na’

Sincez,s&=1, it is nota priori clear whethelo diverges in
The main simplification arises from the fact th@i(Az)
uncouples fromC(z) and is given by
Q1(Az)=6(Az— a). (43

Qu(Az)=6(Az—ka) (44

P2=3 Pi2=3 —[na(z—ja)]
i=o i=o0 J!

XO(z—ja)e "I,

In D(s)

14

-16

k|
ol
a
d
jol
o
o]
0
0
sl
Hoj

(45
wherem is again the largest integer less than or equal &0 1/
To obtaino as a function ofa, we use the normalization
conditionféP(z)dz= 1, which gives

| (46)
0

For « close to 1h we havem=n and this condition can be
rewritten as

)

(1-aj)no

o1
n=>» - dx Xe %
=0 j!

n—-1
€l

o |
" dx e *= > n

. 0 .
o dx ¥e™*,
i=0 J° J@a-ajne

(47)

10 12
FIG. 5. Integrated distributioDs=3=

©

s'=s

D with the samea
Ds=[2/\y2m(1—1/n)]s 2

values as in Fig. 4. The dashed line shows the scaling law The mean avalanche size can again be calculated from Eq.

where we have used agai+ 1—na. From this it is easily
seen thato—o for e—0. Otherwise, the left-hand side
would tend to zero in this limit, while the right-hand side

would remain nonzero. But - diverges, the right-hand side
is dominated by the term with=n— 1. Keeping only domi-
nant terms, we arrive at

o~(n+1)In(1/e).

(48)
(5),
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1012 , : , , sipative Olami-Feder-Christensen earthquake model. Scaling
is observed only in the conservative limit, in which case one
\ has a critical branching process. This is in direct contradic-
100F N ] tion to claims in[12]. The latter was based on approximate
N random neighbor equations, while the present work is based
108 \ on the exact equations. These equations were solved numeri-
\ cally, giving excellent agreement with direct simulations of
N the model.
108 | . The most surprising result was the very fast increase of
N the average earthquake size as one approaches the conserva-
el i tive limit. Obviously this is a consequence of the nonlocality
of the interaction, since this implies that one can have ex-
N tremely large earthquakes without having large effects lo-
10% | . cally. Nevertheless, avalanche size distributions decay expo-
nentially for any nonzero dissipation.

] , , | , Our findings support the viey6] that scaling in the OFC
107 10 108 102 107 model with inhomogeneous boundary conditions is due to a
€ subtle interplay between partial synchronization and desyn-

chronization. The inhomogeneity of the BCs drives the syn-
chronization in the bulk, building up large coherent patches,
but occasionally the driving is too strong and the synchroni-
zation breaks down. Explicit observations of these patterns
1 [6,8] support this view. In a random neighbor model such

(49)  structures cannot build up, of course, and the mechanism
driving the system into a self-organized critical state is ab-
sent.

While we concentrated here on the OFC model, we
showed that our methods can also be applied in other related
models. In particular, we studied the Feder-Feder model in
(s)~nl(nge) "~e ", (500 some detail. We showed that it also has no phase transition

in the dissipative regime and that the toppling rate and the

up to constant and logarithmic factorsénwhich could eas- mean avalanche size diverge in the conservative limit.
ily be computed.

Thus o and (s) both diverge much slower than in the
OFC model. This reflects the increased dissipation in the FF
model. Exact values aof and(s) obtained numerically from
Eqgs.(46) and(49) are shown in Fig. 6. For smadlone finds
good agreement with the asymptotic predictions. Avalanche
dynamics can be treated exactly as in the OFC model.

<$>, ©

FIG. 6. A log-log plot ofs and(s) againste=1—4« for the
Feder-Feder model.

m

> m(l-ja)

j=0

(s)=0/P(1)=

Obviously (s) is finite for all a<1/n and diverges for
a—1/n. In this limit the sum is dominated by the term with
j=n, giving
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